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General fractal-discrete scheme for high-frequency lung sound production
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A general scheme is proposed to explain the observed spectral properties of high-frequency human respira-
tory sounds in terms of the interaction between the respiratory flux and a bronchial tree of fractal properties.
The air flux is treated as composed of discrete decoupled elements while the tree is assumed to have a
Cantor-based geometry. According to this model, the affine behavior often observed in the high-frequency
(log-log) spectral range is a direct consequence of the fractal geometry of the bronchial tree in both qualitative
and quantitative aspects. This strongly indicates that the dynamics underlying the high-frequency sound gen-
eration must have at most nondominant couplings between the relevant fluid components.
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[. INTRODUCTION region, which corresponds to the first 16 generations, where
the respiratory sound is mainly produced.

In human inspiration and expiration curses, the generated From generation to generation, the bronchi radii and
respiratory sounds have their origin in the interaction of thdengths diminish suggesting an underlying fractal geometry.
air flux with the bronchial tree boundary. Although theseAccordingly, some works have attained to estimate The
sounds are frequently used by physicists as a first resourdeactal (Hausdorfj dimension where results varying from
for pathology detection in the human respiratory system, th®(7)~2.60 toD(7)~2.80 were obtainef,7]. Motivated
specific mechanisms of air flux to sound conversion are ndpy the fractal architecture of the lung ramification scheme,
completely understood yet. In fact, the complete understandvhich exhibits geometrically approximate self-similarity, the
ing of respiratory sounds production should come with thePresent discussion is dedicated to the question whether affine
solution of compressive fluid equations under a Comp|e)g5pectral characteristics and self-similar structure imposed by

fractal-like set of boundary conditions, which represents @h€ boundary conditions permit some sort of “reverse engi-
remarkable task. neering” which leads to an air flux description implemented

The spectral characteristics of normal subject breatﬂn a fractal discrete scheme. Such a procedure could replace

sound as determined by experiment are reported by the all} some degree the usual continuous formalisms based in

thors of Refs.[1,2]. Usually, for normal subjects the ob- Spectral analysis which is in general too complicated when a
o SR : . complex set of boundary conditions is involved.
served sound spectrum is divided into a low and high fre We suppose that the flux-tree interactions define a multi-

quency region, respectively. The first typically ranges fromscale flux discretization where eadiscrete elemenivorks
approximately 75 to about 160 Hz while the subsequenty o yermel of interaction. For example, if the respiratory
range is limited by the maximal frequency reliably detectablegqnq were a consequence of the usual resonant interaction
at about 1000 Hz. In the present paper we focus especially Of gpen tubes of length, the discrete elements would be the
the latter spectral region, henceforth referred to ashtge-  Foyrier harmonic modes. Even though all of them can poten-
frequency regionlt is notable that this spectral range fits tja|ly interact with then-generation bronchi, only those with
with considerable accuracy an affine feature in the log-logength\ (n) satisfying\ (n)=2L(n), n=0,1,2,..., will reso-
frequency-amplitude plane, suggesting a self-similar mechanate as a fundamental mode in each generation. The overall
nism for sound generation. Figure 3 illustrates the typicaladdition of these resonating modes would result in the respi-
shape of the amplitude spectrum. ratory sound. The present discussion is an attempt to explain
Fractal geometry has been a useful guide for understandhe sound production with a sort of generalization of that
ing many natural patterns since it seems to be a commotype of interaction scheme.
optimization solution used by Nature. The bronchial tree, It is expected that the mentioned scheme of interacting
here denoted by, is one of the many examples found in the scale takes only into consideration the most relevant compo-
human physiology where a fractal geometry is verifisde  nent of the produced sound. In fact, only the genuine solu-
Refs. [3—6] among others In fact, 7 is composed by tions of the physical equations together with the boundary
successive generations of cylindrical ducts resulting fronmconditions imposed by can show the nature of those dis-
the binary ramification of their antecedent. In its consecucrete elements, which may be Fourier modes, turbulence vor-
tive generations r{=0,1,2,...,23), the treel begins in tices, solitons, or coherent structures in general. However, it
the trachea rf=0), which subdivides into two bronchi will be shown that, for the purpose of a global spectral de-
(n=1) for getting into the left and right lungs, respectively. scription of the high frequency of respiratory sounds, it is not
Inside both lungs, the bronchi suffer more and more succesessential to know what exactly is the nature of those flux
sive binary divisions to finally arrive in the alveoli, where elements. Although, it would be desirable to have this infor-
the exchanges of £and CQ take place. It is in the transport mation for a more detailed description, we postpone the task
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Rn should be symmetric under interchangefff— f! ,. From
the problem solution we could then obtain the audible sound
spectra.

We assume that the transport problem represented by Eq.
(1) with the appropriate initial and boundary conditions can
be decomposed in a sequence of multiscaled simpler prob-
lems, for each of the specific generations. Moreover, that
sequence shall be invariant in scale from generation to gen-
eration. More precisely, if the solutiofl represents any of
the relevant variables, arfd its restriction to generation,
the scaling property

n+1

9 M =1 ©

FIG. 1. Symmetric bifurcation scheme between consecutivesha" hold, wherex=1,2,.... In other words, the relevant
bronchi generations of. Its skeleton is obtained substituting the dynamical conditions from generation to generation are the
cylinders(bronchj of all generations by the axis segments with the . .
same lengths. At the end, it resembles the interaction ske(stan same if properly scaled)y ScallngZ').. .

; ' ’ Instead of setting up the specific form and solving the
Fig. 2. respective d ical " . .
pective dynamical equatiofl), the present discussion

o ) ) ) starts from the symmetry and scaling properties of Efjs.
of finding the answer to a later time, probably via a simula-anq (2) together with the phenomenological fact that reso-
tion approach. ] o nant sound frequencies are related to the geometric dimen-

At the end, we conclude that our scheme is sufficient tasjons(i.e., length scaléf a resonant body, as, for instance,
explain, both qualitatively and quantitatively, the affine char-yith the pipes in a church organ or with a drgigy9]. To be
acteristic of the high-frequency region as a direct consemgre specific, since the spectrum is intimately related to the
guence of our hypotheses_ based on the fractal geomeﬂ".y of underlying flux dynamics, Eqg1) and (2) suggest that the
In Sec. Il we present the interaction schemes, in Sec. lll th%pectrum may be generated by a scheme analog to the fractal
free model parameters are delimited. Discussion and concligrchitecture of the bronchial tree. Accordingly, the fluid—
sion are presented in Sec. IV. bronchi interaction is represented via a nonunifdimuilti-
scaled discretization of the air flux into elements and a se-
lective scheme for the interacting scale for each generation.
In this case, the proposed discretization to be introduced be-

We assume thaf is a self-similar structure composed by low reflects the before-mentioned scaling properties of Egs.
a succession of dichotomous branchings where a pareiit) and(2) which is closely related to the geometry Bf
bronchi gives rise to two smaller daughters. For simplicity, For the case of an equally divided flux into the subsequent
the bifurcations are taken symmetric with respect to the parbronchi, the physical scheme of interactions between the flux
ent, and the bifurcation anglé is constant throughout the elements and the bronchi is equivalent to the uniform Cantor
generationgsee Fig. 1 Consider the duct system as rigid, setC of lacunarity (N;d) [10,11], for an integeN=2 and a
where variations in the overall volume of the bronchial treereald>N. More precisely, we suppose that the succession of
may be neglected for geometric considerations. interactions throughoutZ generations follows the widely

Under a continuous approach, the transport problem to benown uniform (N;d) Cantor set steps of construction, in
solved must result from Navier-Stokes equations under thevhich each basic intervél, , of stepn is replaced byN
specific characteristics of the problem, together with the apequally spaced subintervals, the ends,gf coinciding with
propriate initial and boundary conditions. {If'} represents those ofl, ,.;, and whose length ratio satisfi¢k 1|

Il. THE INTERACTION SCHEME

the set of relevant variablédensity, velocity, pressure, etc. =d ™|, |, for all n. This procedure is repeated infinitum
the deduced transport equation may have the following gedntil the uniform (N;d)-Cantor set is obtained with Haus-
neric structure: dorff dimensionD (C) =logy N. Equivalently, the interaction
scheme could be represented in a tree-like topoiBdjke in
LHF=F{fi},S,..), n=012 .M 1) Fig. 2, where each segment of itsh generation represents

the interaction of the air flux with the current bronchi af

Then,P represents a skeleton of interaction of the respiratory
whereL is a partial differential operator over the set of vari- flux with the consecutive generations @f The fractal di-
ables, and the applicatidf, besides a possible dependencemension ofP is also given byD (P)=logyN [10,11], where
on{f!}, may include terms representing sourSesr result-  dichotomous branching\N=2) is assumed.
ing from simplifications in general. For any particular physi-  As mentioned before, the interactions of the discrete ele-
cal mechanism, the interaction scheme is represented by tirents with themselves as well as the dissipation cutoff ef-
corresponding forms of and F. If f}, and f}, refer to  fects are considered negligible. As the air flux passes through
brother ducts from ar(—1)-generation parent, according to the bronchial tubes, part of the interacting elements kinetic
our hypothesis on the symmetry of bifurcation, bgtlandF  energy is transformed into sound via interaction with the

011905-2



GENERAL FRACTAL-DISCRETE SCHEMES FOR HIGH .. PHYSICAL REVIEW E 69, 011905 (2004

(2) Sound production is associated with thoggn)=2"
fluid portions allowed to pass to the next bronchi gen-
erations, which correspond to the kept intervals in Can-
tor sets construction, and thus could represent a nozzle-
like effect.

Note that the topology o for both scenarios is the same
except that the construction @t for the second scenario is
one step ahead in relation to the first.

One may employ self-similarity and scalé(n)
=d~"L(0) back to the zeroth generation, and writé(n)
=d~"L?(0). Forboth scenarios Eq4) becomes

P(n)= gt dlO1P- 3P0, (5)

FIG. 2. Interaction tree, fon=1,2,...,10(trachea is not shown
which resembles the skeleton Bf

tubular structure. We adopt two quantitative hypothesis about

the sound production due to that interaction. First, we SUPyhere P(0)=0L%0) is the amplitude of the produced

8bund in the zeroth generation and the Hausdorff dimension

density fluctuations with mairfor pitch) frequency w(n) D(P)=logy2. In Decibel scale Eq(5) reads

proportional to some power of typical length scalgn) of
the interacting bronchi, P(n)|gg=20log,d P(n)/P(n)], (6)

w(n)=xL~7(n), (3)  With n the last generation where detectable sound is pro-
duced (i.e., the highest frequency appearing in the experi-
mental spectrum

where « is a proportionality constant. The parametede- Under the scaling rule, E¢3), the equation above yields

fines the specific power law connection between sound fre-
quencies and typical fluid length scales, which in the sim- w(n)
plest case is y=1. We similarly assume that the P(n)|qg=Alog,—= +B, (7)
corresponding amplitud@(n) is also proportional to some ()

power ofL(n), where we have tacitly absorbed constants in the two param-

etersA and B, which are given by

P(n)=oM(n)L°(n), 4
A=—20y"*[6—D(P)]log;o2 ®
whereo is a proportionality constant ard (n) is the num-
ber of discrete elements interacting in generatioffhe re- and
ferred characteristic length scales can be bronchi radius w(M)
L(n)=R(n) or heightL(n)=H(n), but both hypotheses re- B=-20y Y6 D(P)]Iogmm, 9

sult equivalently if we suppose that the raRg§n)/H(n) is
approximately a constant, which is roughly in accordanc
with some geometric models fo? ([5] and references
therein.

Both hypothesis are compatible with many sound produc- w(n):dy(n—ﬁw(ﬁ). (10)
tion scenariog8,9]. For example, it is what happens when
sound is produced by a harmonically bouncing body into the The result given by Eq(7) is in accordance with the
air. If L is a typical scale of the body, sound with frequencyfindings of[1] and[2]. It is noteworthy that independently
given by Eq.(3) with y=1 is produced. Its intensity is pro- of the scenario, where eithé(n)=2""1(d—2) or M(n)
portional to the mean of the squared second time derivative- 2", the resulting spectra are identical, i.e., the fractal
of the volume of the emitting body, i.e., {8?(n)=w*v?.  scheme implies a Babinet-like principle2] and conse-
The same intensity can be also written as proportional to th@uently, from the spectral shape alone, it is not possible to
squared amplitude. Then, the amplitude of the produce(ijjeﬂtify whether scenario 1 or 2, or a mixture of both, is the
sound is proportional tow?V, which is proportional to cause for the observed breath sound.
L=2L3=L, a power ofL.

For each generatiom, M (n) of the above-mentioned flux [ll. DELIMITING THE MODEL PARAMETERS
elements produce sound according to two possible comple-
mentary scenarios.

Svhere the frequencies have been expressed in octaves with
relation to the highest detectahlgn) frequency,

The relevant parameters for our schemedyr& A, andy.
Let us adopty=1, which is consistent with many production
(1) Sound production is associated with thodé(n) sound situations like ifopen or semi-openpipes, resona-
=2""1(d-2) annihilated fluid portions, corresponding tors, pulsating bodies, percussion on membranes&@).
to the discarded intervals in Cantor set construction. We now use the works of Gavrieli and coworkefis2] to
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FIG. 3. Typical spectrum shape according to Gavrilal. [2]. FIG. 4. Graphic oD(P) as a function o andA [see Eq(8)]

The dashed lines represent the amplitude variability usually seen ify, D(P) give the possible combinations for the valuestof
Fhe low-frequency region. Note that the frequencies are distributedinq s. For example, we could conclude that the most likely
in a log scale. integer values fo are 2 and 3 for inspiration and expira-
tion, respectively. This would indicate that the physical
establish the limits foA, and of Nelson and Manchesté&il ~ mechanisms of respiratory sound production in inspiration
and of Stypa[7] to select the values fod, since D(P)  and expiration have fundamental differences: while in the

=logy 2. first case the amplitudes are proportionaltgn), in expi-
First note that if we assume that the lowest frequency isation the proportionality i4.3(n).
produced in generation 4, from E(L0), we have The low-frequency spectral regigi@5—150 Hi does not
fit an affine rule as precise as usually seen in the high-
_ w(4) frequency region. Moreover, even for the same subject, it can
n=4- logdﬁ' (1D yvary substantially, depending on the auscultation point. How-

ever, a significant amount of the generated sound may be due
Let us adoptD(P)=1.7, as reported ifi5]. According to to equivalent mechanisms as the ones covered by our
[2] w(4)~150 Hz. Then, under our hypothesis soundsSchemes. In fact, the reported values for the angular coeffi-
with frequencies up to aléoub(ﬁ)w8800 Hz are pré)duced cientA range over values usually larger than those found for
up to generatiom=13. For the same parameter se(n)  the high-frequency regiofil,2]. From Eq.(8), we can de-
~1200 Hz is produced up to generatioR9. This may in- duce that the associated fractal dimension is higher for the

dicate a loss of higher frequencies due to filter properties iff'St 'é€ generations than the others or, equivalently, the as-
sound acquisition by the usual auscultation procedure. soc_latedj values are smallqr, which is in agreement with the
According to[1] and[2], the amplitude spectra slopes for Veibels mode(14,6] and with those who think that a mul-
the high-frequency region in normal subjects when in inspi-t'fr""c'["’lI model is more appropriate to represgnt
ration varies between-12.7 and—15.2 dB/oct. For expira-
tion, it varies from—13.4 to —20.3 dB/oct. However, this
reflects the respiratory sound already attenuated by the The proposed model for high-frequency respiratory sound
physical characteristics of the chest. In fact, once generategeneration is based on a discrete scheme of interaction of the
in the bronchial tree, the pressure oscillations propagatéow with the usually observed bronchial tree fractal geom-
through a sequence of tissugmrenchyma, bones, muscles, etry, in which the air flux interacts witd according to the
and faj until be capted by a stethoscope. According to thetopology of a Cantor based tréskeleton . We consider
literature, the transfer function of the chest cavity can bewo complementary scenarios of interaction where either the
approximately supposed as log-log affine with a slope oktopped or the passed fluid portions are responsible for sound
about—8.0 dB/oct[13]. This means that the original slopes production. In both cases, the flux kinetic energy is con-
A of the auscultated sound are abewt.7 to—7.2 dB/oct for  verted into sound with both intensity and frequency propor-
inspiration and about-5.4 to —12.3 dB/oct for expiration. tional to powers of the discrete element producing sound. In
Figure 3 illustrates the typical spectrum shape. both scenarios the interaction skeletbnis the same, with
The scaling parametet is associated to both geometries dimension given by log2. The model lead us to conclude
of Pand7[D(7)=D(P)+ 1] and then, it must be the same that, for both scenarios, the log-log spectra concerning to the
for inspiration and expiration. Sinces2D(7)<3 [5,7], or  high-frequency region are affine with slopedetermined by
equivalently kD (P)<2, we have 1.28d<1.41. Figure 4 P's fractal dimension end the relation given by E§). That
illustrates the dependence B{P) as a function of§ and A, relation is consistent with some estimations for bétland
obtained from Eq(8), for the relevant ranges. The level setsD(7) [1,2,5,7,15.

IV. DISCUSSION AND CONCLUSION
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The consistency of predictions with the observations sugef them. In this case, the geometries?fnd7 are at most
gests that the connection between the actual physical mecheelated, but not the same. The valye 1 assumed to discuss
nisms given by Eq(1) and the boundary conditions defined some numerical results in the previous section could also be
by 7 should fit the proposed schemes. Therefore, even ndelaxed.
being sufficient to completely determine the physics of the Besides the consistency of the predictions with the obser-
respiratory sound production, some insight can be taken fronMations, the discrete approach adopted in our model can find
the present study. Moreover, the present discussion is in a8ome formal justification by considering that some turbulent
cordance with the simulations carried out by Aimeitaal. ~ '€9imes have been treated as resultant of a number of un-
[16] of Navier-Stokes equations in two-dimensional ramified®eUPled coherent structures like solitdis]. These formal-
structures likeZ. These authors found strong indication that'SMS have been succesgfu] n reproducm_g the overaI_I ob-
the flux distributions alon@’s generations are set up under a §erved spectral characteristics of such regimes. Accprdlngly,
self-similar scheme in which a binary model was proposed!” the proposed model, only weak nonlinear interactions be-
If the analogy of our hypothesis on the symbolic equatiin tween sm_Jch structures are implicitly taker_1 into cons_|derat|on
with those indications where perfect, the two-dimensionalby the discretization scheme. Therefore, if the consistency of

Navier-Stokes equations numerically integrateftié] could our model with respect to observations reflepts physical
be further simplified to fit the format of that symbolic trans- equivalence, one may conclude that such coupling effects are

port equation and its solutions would satisfy E2). not relevant in thg high-frequency_ Iung_soun_d production.
Under the supposition that the geometriesPo&nd 7 are Further, recent evidence of Cha_otlc regimes in the overall
equivalent, we must conclude from the estimationsA@nd respiratory sound frequen@zS] m|ght be traced back io thg
D(7) that the physical mechanisms for sound production i ow—freguency spectral region, which corresponds to the first
inspiration and expiration are not the same. It is important t _ronc_hl genera_tlonsn($4). in fa_ct the_ pressure perturba-
note, however, that the hypothesis of equivalence betien tions in that region may be s_,ufﬂmently Intense for_those cou-
and7 geometries may be relaxed, and are associated to thImg effects to prodqce nonintegrable chao_tl_c regimes. How-
ferent scaling parameteds andd,, respectively. This gets ever, such pgrturbanons are out _of the validity region of our
our schemes richer in possible scenarios, but still satisfyin§”°del’ a topic to be considered in a future work.
the affine high-frequency spectral characteristics. For ex-
ample, if we suppose that the physical mechanisms for inspi-
ration and expiration are the same, we must conclude that the The authors would like to thank Professor ddaoedert
dimension of P depends on the phenomefiaspiration or  for fruitful discussions and suggestions. D.F. would like to
expiration, i.e., the flux energy partition is different for each thank CAPES for financial support.
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