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General fractal-discrete scheme for high-frequency lung sound production
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A general scheme is proposed to explain the observed spectral properties of high-frequency human respira-
tory sounds in terms of the interaction between the respiratory flux and a bronchial tree of fractal properties.
The air flux is treated as composed of discrete decoupled elements while the tree is assumed to have a
Cantor-based geometry. According to this model, the affine behavior often observed in the high-frequency
~log-log! spectral range is a direct consequence of the fractal geometry of the bronchial tree in both qualitative
and quantitative aspects. This strongly indicates that the dynamics underlying the high-frequency sound gen-
eration must have at most nondominant couplings between the relevant fluid components.
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I. INTRODUCTION

In human inspiration and expiration curses, the genera
respiratory sounds have their origin in the interaction of
air flux with the bronchial tree boundary. Although the
sounds are frequently used by physicists as a first reso
for pathology detection in the human respiratory system,
specific mechanisms of air flux to sound conversion are
completely understood yet. In fact, the complete understa
ing of respiratory sounds production should come with
solution of compressive fluid equations under a comp
fractal-like set of boundary conditions, which represent
remarkable task.

The spectral characteristics of normal subject bre
sound as determined by experiment are reported by the
thors of Refs.@1,2#. Usually, for normal subjects the ob
served sound spectrum is divided into a low and high f
quency region, respectively. The first typically ranges fro
approximately 75 to about 160 Hz while the subsequ
range is limited by the maximal frequency reliably detecta
at about 1000 Hz. In the present paper we focus especiall
the latter spectral region, henceforth referred to as thehigh-
frequency region. It is notable that this spectral range fi
with considerable accuracy an affine feature in the log-
frequency-amplitude plane, suggesting a self-similar mec
nism for sound generation. Figure 3 illustrates the typi
shape of the amplitude spectrum.

Fractal geometry has been a useful guide for understa
ing many natural patterns since it seems to be a comm
optimization solution used by Nature. The bronchial tr
here denoted byT, is one of the many examples found in th
human physiology where a fractal geometry is verified~see
Refs. @3–6# among others!. In fact, T is composed by
successive generations of cylindrical ducts resulting fr
the binary ramification of their antecedent. In its conse
tive generations (n50,1,2,...,23), the treeT begins in
the trachea (n50), which subdivides into two bronch
(n51) for getting into the left and right lungs, respective
Inside both lungs, the bronchi suffer more and more succ
sive binary divisions to finally arrive in the alveoli, wher
the exchanges of O2 and CO2 take place. It is in the transpor
1063-651X/2004/69~1!/011905~5!/$22.50 69 0119
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region, which corresponds to the first 16 generations, wh
the respiratory sound is mainly produced.

From generation to generation, the bronchi radii a
lengths diminish suggesting an underlying fractal geome
Accordingly, some works have attained to estimate theT
fractal ~Hausdorff! dimension where results varying from
D(T );2.60 toD(T );2.80 were obtained@5,7#. Motivated
by the fractal architecture of the lung ramification schem
which exhibits geometrically approximate self-similarity, th
present discussion is dedicated to the question whether a
spectral characteristics and self-similar structure imposed
the boundary conditions permit some sort of ‘‘reverse en
neering’’ which leads to an air flux description implement
in a fractal discrete scheme. Such a procedure could rep
in some degree the usual continuous formalisms base
spectral analysis which is in general too complicated whe
complex set of boundary conditions is involved.

We suppose that the flux-tree interactions define a mu
scale flux discretization where eachdiscrete elementworks
as a kernel of interaction. For example, if the respirato
sound were a consequence of the usual resonant intera
in open tubes of lengthL, the discrete elements would be th
Fourier harmonic modes. Even though all of them can pot
tially interact with then-generation bronchi, only those wit
lengthl(n) satisfyingl(n)52L(n), n50,1,2,..., will reso-
nate as a fundamental mode in each generation. The ov
addition of these resonating modes would result in the re
ratory sound. The present discussion is an attempt to exp
the sound production with a sort of generalization of th
type of interaction scheme.

It is expected that the mentioned scheme of interact
scale takes only into consideration the most relevant com
nent of the produced sound. In fact, only the genuine so
tions of the physical equations together with the bound
conditions imposed byT can show the nature of those di
crete elements, which may be Fourier modes, turbulence
tices, solitons, or coherent structures in general. Howeve
will be shown that, for the purpose of a global spectral d
scription of the high frequency of respiratory sounds, it is n
essential to know what exactly is the nature of those fl
elements. Although, it would be desirable to have this inf
mation for a more detailed description, we postpone the t
©2004 The American Physical Society05-1
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of finding the answer to a later time, probably via a simu
tion approach.

At the end, we conclude that our scheme is sufficien
explain, both qualitatively and quantitatively, the affine ch
acteristic of the high-frequency region as a direct con
quence of our hypotheses based on the fractal geometryT.
In Sec. II we present the interaction schemes, in Sec. III
free model parameters are delimited. Discussion and con
sion are presented in Sec. IV.

II. THE INTERACTION SCHEME

We assume thatT is a self-similar structure composed b
a succession of dichotomous branchings where a pa
bronchi gives rise to two smaller daughters. For simplic
the bifurcations are taken symmetric with respect to the p
ent, and the bifurcation angleu is constant throughout th
generations~see Fig. 1!. Consider the duct system as rigi
where variations in the overall volume of the bronchial tr
may be neglected for geometric considerations.

Under a continuous approach, the transport problem to
solved must result from Navier-Stokes equations under
specific characteristics of the problem, together with the
propriate initial and boundary conditions. If$ f j% represents
the set of relevant variables~density, velocity, pressure, etc.!,
the deduced transport equation may have the following
neric structure:

L@$ f j%#5F~$ f j%,S,...!, n50,1,2,...,n̄, ~1!

whereL is a partial differential operator over the set of va
ables, and the applicationF, besides a possible dependen
on $ f j%, may include terms representing sourcesS or result-
ing from simplifications in general. For any particular phy
cal mechanism, the interaction scheme is represented by
corresponding forms ofL and F. If f n,1

j and f n,2
j refer to

brother ducts from a (n21)-generation parent, according
our hypothesis on the symmetry of bifurcation, bothL andF

FIG. 1. Symmetric bifurcation scheme between consecu
bronchi generations ofT. Its skeleton is obtained substituting th
cylinders~bronchi! of all generations by the axis segments with t
same lengths. At the end, it resembles the interaction skeleton~see
Fig. 2!.
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should be symmetric under interchange off n,1
j ↔ f n,2

j . From
the problem solution we could then obtain the audible sou
spectra.

We assume that the transport problem represented by
~1! with the appropriate initial and boundary conditions c
be decomposed in a sequence of multiscaled simpler p
lems, for each of the specific generations. Moreover, t
sequence shall be invariant in scale from generation to g
eration. More precisely, if the solutionf j represents any o
the relevant variables, andf n

j its restriction to generationn,
the scaling property

Zl f n1l
j 5 f n

j ~2!

shall hold, wherel51,2,... . In other words, the relevan
dynamical conditions from generation to generation are
same if properly scaled~by scalingZ!.

Instead of setting up the specific form and solving t
respective dynamical equation~1!, the present discussio
starts from the symmetry and scaling properties of Eqs.~1!
and ~2! together with the phenomenological fact that res
nant sound frequencies are related to the geometric dim
sions~i.e., length scales! of a resonant body, as, for instanc
with the pipes in a church organ or with a drum@8,9#. To be
more specific, since the spectrum is intimately related to
underlying flux dynamics, Eqs.~1! and ~2! suggest that the
spectrum may be generated by a scheme analog to the fr
architecture of the bronchial tree. Accordingly, the fluid
bronchi interaction is represented via a nonuniform~multi-
scaled! discretization of the air flux into elements and a s
lective scheme for the interacting scale for each generat
In this case, the proposed discretization to be introduced
low reflects the before-mentioned scaling properties of E
~1! and ~2! which is closely related to the geometry ofT.

For the case of an equally divided flux into the subsequ
bronchi, the physical scheme of interactions between the
elements and the bronchi is equivalent to the uniform Can
setC of lacunarity (N;d) @10,11#, for an integerN>2 and a
reald.N. More precisely, we suppose that the succession
interactions throughoutT generations follows the widely
known uniform (N;d) Cantor set steps of construction,
which each basic intervalI k,n of step n is replaced byN
equally spaced subintervals, the ends ofI k,n coinciding with
those of I k,n11 , and whose length ratio satisfiesuI k,n11u
5d21uI k,nu, for all n. This procedure is repeatedad infinitum
until the uniform (N;d)-Cantor set is obtained with Haus
dorff dimensionD(C)5 logd N. Equivalently, the interaction
scheme could be represented in a tree-like topologyP like in
Fig. 2, where each segment of itsnth generation represent
the interaction of the air flux with the current bronchi ofT.
Then,P represents a skeleton of interaction of the respirat
flux with the consecutive generations ofT. The fractal di-
mension ofP is also given byD(P)5 logd N @10,11#, where
dichotomous branching (N52) is assumed.

As mentioned before, the interactions of the discrete e
ments with themselves as well as the dissipation cutoff
fects are considered negligible. As the air flux passes thro
the bronchial tubes, part of the interacting elements kine
energy is transformed into sound via interaction with t

e
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tubular structure. We adopt two quantitative hypothesis ab
the sound production due to that interaction. First, we s
pose that, at each bronchi, the produced sound comes
density fluctuations with main~or pitch! frequencyv(n)
proportional to some power of typical length scaleL(n) of
the interacting bronchi,

v~n!5kL2g~n!, ~3!

wherek is a proportionality constant. The parameterg de-
fines the specific power law connection between sound
quencies and typical fluid length scales, which in the s
plest case is g51. We similarly assume that th
corresponding amplitudeP(n) is also proportional to some
power ofL(n),

P~n!5sM ~n!Ld~n!, ~4!

wheres is a proportionality constant andM (n) is the num-
ber of discrete elements interacting in generationn. The re-
ferred characteristic length scales can be bronchi ra
L(n)5R(n) or heightL(n)5H(n), but both hypotheses re
sult equivalently if we suppose that the ratioR(n)/H(n) is
approximately a constant, which is roughly in accordan
with some geometric models forT ~@5# and references
therein!.

Both hypothesis are compatible with many sound prod
tion scenarios@8,9#. For example, it is what happens whe
sound is produced by a harmonically bouncing body into
air. If L is a typical scale of the body, sound with frequen
given by Eq.~3! with g51 is produced. Its intensity is pro
portional to the mean of the squared second time deriva

of the volume of the emitting body, i.e., toV̈2(n)[v4V2.
The same intensity can be also written as proportional to
squared amplitude. Then, the amplitude of the produ
sound is proportional tov2V, which is proportional to
L22L35L, a power ofL.

For each generationn, M (n) of the above-mentioned flux
elements produce sound according to two possible com
mentary scenarios.

~1! Sound production is associated with thoseM (n)
52n21(d22) annihilated fluid portions, correspondin
to the discarded intervals in Cantor set construction.

FIG. 2. Interaction tree, forn51,2,...,10~trachea is not shown!,
which resembles the skeleton ofT.
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~2! Sound production is associated with thoseM (n)52n

fluid portions allowed to pass to the next bronchi ge
erations, which correspond to the kept intervals in Ca
tor sets construction, and thus could represent a noz
like effect.

Note that the topology ofP for both scenarios is the sam
except that the construction ofP for the second scenario i
one step ahead in relation to the first.

One may employ self-similarity and scaleL(n)
5d2nL(0) back to the zeroth generation, and writeLd(n)
5d2dnLd(0). Forboth scenarios Eq.~4! becomes

P~n!5
M ~n!

2n d@D~P!2d#nP~0!, ~5!

where P(0)5sLd(0) is the amplitude of the produce
sound in the zeroth generation and the Hausdorff dimens
D(P)5 logd 2. In Decibel scale Eq.~5! reads

P~n!udB520 log10@P~n!/P~ n̄!#, ~6!

with n̄ the last generation where detectable sound is p
duced ~i.e., the highest frequency appearing in the expe
mental spectrum!.

Under the scaling rule, Eq.~3!, the equation above yield

P~n!udB5A log2

v~n!

v~ n̄!
1B, ~7!

where we have tacitly absorbed constants in the two par
etersA andB, which are given by

A5220g21@d2D~P!# log102 ~8!

and

B5220g21@d2D~P!# log10

v~ n̄!

v~0!
, ~9!

where the frequencies have been expressed in octaves
relation to the highest detectablev(n̄) frequency,

v~n!5dg~n2n̄!v~ n̄!. ~10!

The result given by Eq.~7! is in accordance with the
findings of @1# and @2#. It is noteworthy that independentl
of the scenario, where eitherM (n)52n21(d22) or M (n)
52n, the resulting spectra are identical, i.e., the frac
scheme implies a Babinet-like principle@12# and conse-
quently, from the spectral shape alone, it is not possible
identify whether scenario 1 or 2, or a mixture of both, is t
cause for the observed breath sound.

III. DELIMITING THE MODEL PARAMETERS

The relevant parameters for our scheme ared, d, A, andg.
Let us adoptg51, which is consistent with many productio
sound situations like in~open or semi-open! pipes, resona-
tors, pulsating bodies, percussion on membranes, etc.@8,9#.
We now use the works of Gavrieli and coworkers@1,2# to
5-3
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establish the limits forA, and of Nelson and Manchester@5#
and of Stypa@7# to select the values ford, since D(P)
5 logd 2.

First note that if we assume that the lowest frequency
produced in generation 4, from Eq.~10!, we have

n̄542 logd

v~4!

v~ n̄!
. ~11!

Let us adoptD(P)51.7, as reported in@5#. According to
@2# v~4!'150 Hz. Then, under our hypothesis, soun
with frequencies up to aboutv(n̄)'8800 Hz are produced
up to generationn̄513. For the same parameter set,v(n̄)
'1200 Hz is produced up to generationn̄59. This may in-
dicate a loss of higher frequencies due to filter propertie
sound acquisition by the usual auscultation procedure.

According to@1# and@2#, the amplitude spectra slopes fo
the high-frequency region in normal subjects when in ins
ration varies between212.7 and215.2 dB/oct. For expira-
tion, it varies from213.4 to 220.3 dB/oct. However, this
reflects the respiratory sound already attenuated by
physical characteristics of the chest. In fact, once gener
in the bronchial tree, the pressure oscillations propag
through a sequence of tissues~parenchyma, bones, muscle
and fat! until be capted by a stethoscope. According to
literature, the transfer function of the chest cavity can
approximately supposed as log-log affine with a slope
about28.0 dB/oct@13#. This means that the original slope
A of the auscultated sound are about24.7 to27.2 dB/oct for
inspiration and about25.4 to 212.3 dB/oct for expiration.
Figure 3 illustrates the typical spectrum shape.

The scaling parameterd is associated to both geometrie
of P andT @D(T)5D(P)11# and then, it must be the sam
for inspiration and expiration. Since 2<D(T)<3 @5,7#, or
equivalently 1<D(P)<2, we have 1.25<d<1.41. Figure 4
illustrates the dependence ofD(P) as a function ofd andA,
obtained from Eq.~8!, for the relevant ranges. The level se

FIG. 3. Typical spectrum shape according to Gavrielyet al. @2#.
The dashed lines represent the amplitude variability usually see
the low-frequency region. Note that the frequencies are distribu
in a log scale.
01190
is

s

in

i-

e
ed
te

e
e
f

for D(P) give the possible combinations for the values ofA
andd. For example, we could conclude that the most like
integer values ford are 2 and 3 for inspiration and expira
tion, respectively. This would indicate that the physic
mechanisms of respiratory sound production in inspirat
and expiration have fundamental differences: while in
first case the amplitudes are proportional toL2(n), in expi-
ration the proportionality isL3(n).

The low-frequency spectral region~75–150 Hz! does not
fit an affine rule as precise as usually seen in the hi
frequency region. Moreover, even for the same subject, it
vary substantially, depending on the auscultation point. Ho
ever, a significant amount of the generated sound may be
to equivalent mechanisms as the ones covered by
schemes. In fact, the reported values for the angular co
cientA range over values usually larger than those found
the high-frequency region@1,2#. From Eq.~8!, we can de-
duce that the associated fractal dimension is higher for
first tree generations than the others or, equivalently, the
sociatedd values are smaller, which is in agreement with t
Weibels model@14,6# and with those who think that a mul
tifractal model is more appropriate to representT.

IV. DISCUSSION AND CONCLUSION

The proposed model for high-frequency respiratory sou
generation is based on a discrete scheme of interaction o
flow with the usually observed bronchial tree fractal geo
etry, in which the air flux interacts withT according to the
topology of a Cantor based tree~skeleton! P. We consider
two complementary scenarios of interaction where either
stopped or the passed fluid portions are responsible for so
production. In both cases, the flux kinetic energy is co
verted into sound with both intensity and frequency prop
tional to powers of the discrete element producing sound
both scenarios the interaction skeletonP is the same, with
dimension given by logd 2. The model lead us to conclud
that, for both scenarios, the log-log spectra concerning to
high-frequency region are affine with slopeA determined by
P’s fractal dimension end the relation given by Eq.~8!. That
relation is consistent with some estimations for bothA and
D(T ) @1,2,5,7,15#.

in
d

FIG. 4. Graphic ofD(P) as a function ofd andA @see Eq.~8!#.
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The consistency of predictions with the observations s
gests that the connection between the actual physical me
nisms given by Eq.~1! and the boundary conditions define
by T should fit the proposed schemes. Therefore, even
being sufficient to completely determine the physics of
respiratory sound production, some insight can be taken f
the present study. Moreover, the present discussion is in
cordance with the simulations carried out by Almeidaet al.
@16# of Navier-Stokes equations in two-dimensional ramifi
structures likeT. These authors found strong indication th
the flux distributions alongT’s generations are set up under
self-similar scheme in which a binary model was propos
If the analogy of our hypothesis on the symbolic equation~1!
with those indications where perfect, the two-dimensio
Navier-Stokes equations numerically integrated in@16# could
be further simplified to fit the format of that symbolic tran
port equation and its solutions would satisfy Eq.~2!.

Under the supposition that the geometries ofP andT are
equivalent, we must conclude from the estimations forA and
D(T ) that the physical mechanisms for sound production
inspiration and expiration are not the same. It is importan
note, however, that the hypothesis of equivalence betweeP
andT geometries may be relaxed, and are associated to
ferent scaling parametersd1 andd2 , respectively. This gets
our schemes richer in possible scenarios, but still satisfy
the affine high-frequency spectral characteristics. For
ample, if we suppose that the physical mechanisms for in
ration and expiration are the same, we must conclude tha
dimension ofP depends on the phenomena~inspiration or
expiration!, i.e., the flux energy partition is different for eac
.,

ll,

g

l.

s
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of them. In this case, the geometries ofP andT are at most
related, but not the same. The valueg51 assumed to discus
some numerical results in the previous section could also
relaxed.

Besides the consistency of the predictions with the obs
vations, the discrete approach adopted in our model can
some formal justification by considering that some turbul
regimes have been treated as resultant of a number of
coupled coherent structures like solitons@17#. These formal-
isms have been successful in reproducing the overall
served spectral characteristics of such regimes. Accordin
in the proposed model, only weak nonlinear interactions
tween such structures are implicitly taken into considerat
by the discretization scheme. Therefore, if the consistenc
our model with respect to observations reflects phys
equivalence, one may conclude that such coupling effects
not relevant in the high-frequency lung sound productio
Further, recent evidence of chaotic regimes in the ove
respiratory sound frequency@18# might be traced back to the
low-frequency spectral region, which corresponds to the fi
bronchi generations (n<4). In fact the pressure perturba
tions in that region may be sufficiently intense for those co
pling effects to produce nonintegrable chaotic regimes. Ho
ever, such perturbations are out of the validity region of o
model, a topic to be considered in a future work.
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